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ABSTRACT

We consider here a model of traff ic flow on a road network.

For each ordered pair of nodes there is a demand function which

expresses travel demand between the two nodes as a function of travel

times on the network. Each road (arc) has a delay function which

expresses travel time on that arc as a function of total traffic flow.

Our objective is to show how an equilibrium of travel times, flows,

and demands may be computed under conditions which are simple, general,

and plausible.

To solve the network problems we develop techniques for solving

the stationary point problem. These techniques for the stationary

point problem are the best of which we are aware.
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CHAPTE R 1

INT ROLUCTION

Let (‘1(,~ ) be a directed network with nodes i in and

arcs ij in (1. Our interest is in the traffic flows and travel times

on the network.

For each arc ij we are given a delay function f~~ which

expresses travel time on arc ij as a function of the traffic flows on

the arcs of the network. We might expect that travel time along arc

ij would depend on the flow on that arc, but it may depend on flows

along other arcs as well. In particular a two-way street could be

modeled as a pair of opposing arcs, and the flow on one of the arcs

might affect the travel time on the other arc.

Another way in which the interactions between different arcs

may arise is in the modelling of an intersection. Florian and Nguyen

{lO i employed two methods of representing an intersection , see

Figures 1 and 2. Travel time across the intersection will depend on

the traffic in other directions. For instance the time required to

make a left turn will be affected by the density of oncoming traffic.

For each pair of distinct nodes i,k we are given a travel

demand function which expresses demand for travel from i to k

as a function of travel times between nodes on the network. Demand for

travel from i to k would, of course, depend on travel time from

1.
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i to k. But it might also depend on travel times between other pairs

of nodes, for instance from i to some alternate destination. Later in

this chapter we will address some of the issues involved in deriving

these demand functions.

The ability to handle these interactions between various arcs

and origin-destination pairs is the principal contribution of this paper.

Many models very much like the model presented here have been

developed over the last 25 years. The earliest examples of this kind

are due to Wardrop [13] and Beckman [2]. These models are based on the

notion that the road system has a large community of users, with each

user taking the quickest route available, given the actions of other

users. In addition, the number of trips made may depend on the time

required to make a trip. On the other hand, travel time on a particular

road will depend on traffic volume.

Numerous solution procedures have been proposed for these models.

The usual approach has been to reformulate the equilibrium problem as a

convex programming problem. This has the advantage that convex programming

technioues when applied to this type of problem can be very efficient r9]~

Rather strong conditions must be satisfied by the functions f and g in

order for these procedures to be valid. In particular, f must be

integrable and g must have an inverse which is integrable. This will

be true if each 
~~~~~~ 

depends only on the total flow Y~ ~ijk 
and each

g. k depends only on ~~ k and is monotone decreasing . The equilibrium
1, ,

problem is solved under conditions like these by Beckman [3], Dafermos

and Sparrow [5], Florian and Nguyen [9], and others.

3
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Dafermos [24] discusses a model in which travel times on one arc

may depend on the flow on another arc in order to model the interaction

of traffic going in opposite directions on a two-way street. In order

to use the nonlinear programming approach she assumes that the delay

functions are continuously differentiable, with symmetric Jacobian

matrices. These assumptions are essentially a restatement of the

integrability conditions mentioned above. These are reasonable when the

street is symmetric and the traffic flow is about the same in each

direction. Otherwise, the methods presented here would seem more

applicable. This would be particularly true for the modeling of an

intersection where the situation would normally be quite unsymnietric.

In practice the demand and delay functions f and g are at

best empirical fits and can be endowed with these or any other restric-

tions which may seem useful. It should be noted, however, that the

approach used here does not require such restrictions, and these restric-

tions can be expected to complicate the handling of interactions between

various arcs and origin-destination pairs as described above. Indeed to

compute an equilibrium it is only necessary that the delay functions

f.. be positive on each arc, that the travel demand functions g. k

be nonnegative and bounded for each pair of nodes, and that the network

be complete that is, there is a directed path from every node to every

other node. Unfortunately we must pay a price in computational efficiency

for the additional generality. For problems which can be solved by

convex programming techniaues that would be the best approach.

Next we present the mathematical conditions for a user

ecuilibrium . The travel time from node I to node k will be written

t4 ~~~. The flow on arc ij with destination k will be written y~ .
3,
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We say that the vectors of travel times t and flows x and y are

in ecuilibrium If the following conditions hold.

1.a) g.~~ (t) = 
~~~ ~~~~~ 

- 

~ i ~ k, I , k E
3 3

l.b) y > O

l.c) tjk ~~~ f 1~ (x) + t
i k  

i / k, ij ~~, k €

t
kk O k~~~9~

l.d) y~~~~(f1~
(x) + t

i k  
— t

ik
) = 0 i ~ k, ij ~~, k

l.e) x . = y.. ij € ~k i,j,k

It may be useful to think of this system as a multicommodity

network, where all of the traff ic dest ined for a particular node k

is a separate commodity, all of which must be shipped to node k via

the network. In this way g~~~(t) is the amount of commodity k

which must travel from node i to node k. This trip will traverse a path

of arcs from i to k.

Condition (l.a) is the conservation of flow equation. It says

that the traffic leaving node i with destination k is the sum of the

traffic arriving at node i with destination k and the traffic

originating at I with destination k.

Condition (l.b) says that traffic flows cannot be

negative.

5
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Conditions ( l . c )  and ( l .d )  require that t raff ic  flow by the

f astest route available . In (i. c )  we - 2qui re t~iat ~~~ . not exceed

the minimum travel time from i to k given the flo~ c y on the net-

work. Then (l.d) says that traffic may flow only aiong a route which

achieves this minimum travel time. Together (l.c) and (l. d ) imply

the principle of minimum travel t ime . This says that if any tr aff ic

flows f ro m i to k, that is if 
~~ ~

ijk > 0, then

t i k  = mm + t
i k ~~

Equation (l.e) relates the basic flows y to the total arc flows x .

More generally, the functions f and g may be point-to-set

maps. In this case we say tha~. travel times t, f - ~ws x and y, and

arc delays t are in equilibrium if the following conditions hold.

l. a) 
~ ~~~~~ 

- 

~ ~~i.,k 
€ g.~~ (t) i ~ k, i,k ~

l.b ) y > O

~.c) t € f(x)

t
i,k ~ 

t
ij 

+ t
jk 

i ~� k, ii U, k €2 ?

t~~~= O

l .d ) Y I j k
.(T

I j  + t
j,k 

- t
i k ) = 0 i -

~ k, i,j U, k .~

l.e) x .ii Ic
6 
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In the following theorems we require that the del&ys and demands

be expressed in terms of upper semicontinuous convex valued point-to-set

maps. In practice these functions are usually continuous and hence

satisfy the requirements.

THEOREM 1. Suppose ()~,@) is a complete network. Suppose

i) f, the delay function is positive, convex valued, and upper semi-

continuous on (xjx > 0) and

ii ) g, the demand function is nonnegative, bounded , convex valued , and

upper semicontinuous on ( t i t  > 0).

Then solu~ ion to thc equ i l ib r ium p~rnblein e x i s t s  and ~n be cor~pu t e~ by

the Eaves-Saigal algorithm. 0

Recently Aashtiani [1] has shown how the equilibrium problem can

be formulated as a coinp lementarity problem. Complementarity problems

will be defined in Section 1 of Chapter 2. Aashtiani ’ s approach is like

the approach used here. He proved an existence theorem which is s imilar

to Theorem 1, but he shows that his solution procedure may not converge

under the conditions of his theorem.

The conditions of Theorem 1 would seem to be sufficiently general

to allow the modelling of a traffic network. However, many actual

systems have been modelled with demand functions which are unbounded when

the corresponding travel times are small. Beckmann [3] suggests the

following formula for travel demand.

7 
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p
g.~~ (t) ~~~~ 

(t 

k

)
a

i,k

Here p is the vector of populations at various nodes, and a and c

are given constants. Utility functions can also be used to derive

travel demands. In neither case are the conditions of Theorem 1 satisfied.

It will be easy to see that the explicit function given above satisfies

the conditions of Theorem 2. Theorem 3 and the discussion preceding

it show how a demand function may be derived using utility functions

which satisfies the conditions of Theorem 2.

Here t > € means no component of t is less than € .

THEOREM 2. Suppose (9j,U) is a complete network. Let E > 0. Suppose

i~ f, the delay function is upper semicontinuous and convex valued,

ii) Each f~~(x) > € for all x > 0, and

iii) g, the demand function is nonnegative, bounded, convex valued and

upper semicontinuous, on (tjt > d .

Then a solution to the equilibrium problem exists and can be computed by

the Eaves-Saigal algorIthm. 0

Theorem 1 is just the special ca. e of Theorem 2 where € =

The following paragraphs will show how the assump~ions on g in

Theorem 2 arise naturally when g is derived as the sum of demands

by consumers, each maximizing his own utility function.

___________________ - . —-,- —-——.~~— — ---, — ._— — -- .— — -.-.—-—--—--— _ ___=_•_—*
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We now suppose that the network is used by several consumers j.

Each observes the condition of t~ie net~~rk as measured by the travel

time vector t. Each sets up a new potential demand vector that maximizes

his utility. Hi~- utility is affectei by the amount of travel between

the various node pairs on the network, ~,r -i the total time devoted to

travel. This utility is expressed through a function U3. For simplicity

we assume that each consumer has an upper bound on the total amount

of time he has available for travel. The sum over all j of the demands

for travel originating at i and destined for k represents

Given travel time s the vector of t, the jth consumer will find

a pair (q 3 ,r 3
~ which maximizes

subject to y~
3 .i < q~

r3 > o , q3~~Z~~
3

where is the vector of travel demands for various node pairs, and

q3 is the total amount of time devoted to travel by j. The vector

product ~-
3
~t is the sum of the time spent in travel between all node

pairs. hence its terms represent an allocation of q3.

The following theorem shows that the demand function derived as

the sum of these individual consumer demands satisfies the requirements

of Theorem 2. It tells us that if g is derived as above and f > €

for any ~ > 0 then the hypotheses of Theorem 2 will be satisfied.

- - - . .-fl- ---•_. - . -—I- ~~~~~~ - - — - . - -
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THEOREM 3. Suppose that each U~ is convex and continuous. For each

t > 0 define g(t) = Z. g3(t). Then for each ~ > 0, g is non-

negative, bounded, convex valued, and upper semicontinoous on

Itit t l . 0

In Theorems 1 and 2 conditions (l.a) through (1.e) were shown

to have a solution and that the Eaves-Saigal algorithm can construct

a solution. For the special cases mentioned above where the problem

can be solved as a convex program the equilibrium solution can also be

shown to be unique. The following theorem extends the uniqueness

property to a more general situation.

A point-to-set mapping f is called monotone on K C Rn if

for each pair of vectors x1 and x2 in K and every y1 f(x~~

ana y2 E f(x2~, (x
1
-x
2
)~~(y

1
-y
2) >0. The mapping f strictly monotone

if for every pair of distinct vectors x1 and x2 in K, and every

1 1 2 2 1 2  1 2
y E f(x ) and y € f(x ), (x -x).(y - y ) > O .

The following theorem includes the convex programming unique-

ness result as a special case since the gradient of a strictly convex

function is strictly monotone.

THEOREM 14. Suppose in addition to the hypotheses of Theorem 2 that f

and -g are strictly monotone. Then the set of solutions to the equi-

librium problem is convex and the total flows x are unique. 0

The proofs of the theorems of this chapter will be delayed unt il

Chapter 3 since they require the background material of Chapter 2.

10



CHAPTER 2

THE STATIONARY POINT PROBLEM

The stationary point problem provides a common framework which

includes the linear and nonlinear complementarity problems as well as

fixed point problems. Applications come from such diverse areas as

economics, game theory, mathematical programming and mechanics. For this

reason the results of this chapter should be of interest beyond the

specific equilibrium problems of this dissertation. However the approach

used here is largely dictated by the problems at hand.

In Section 1 of this chapter after giving the necessary basic

definitions, we explore some of the more important special cases of the

stationary point problem. Section 2 is devoted to existence theorems;

in Section 3 we present two theorems which address the question of

uniqueness of stationary points.

2.1. Definitions and Examples

Let D be a subset of R~. A point-to-set map f from D to

subsets of R’1 is called upper semicontinuous if x1 —+ x and y1 f(x
1
)

imply that yi has a cluster point in f(x). (We must make a slightly

stronger definition here than is usual since we do not assume that the

image set is compact.)

We say that f is lower semicontinuous if x~ .. x and y f(x)

imply that there is a sequence y1 -~~ y such that y 1 ~ f(x
1) for all i.

Li



If f is both upper sernicont inuous and Lowe r semicontinuous then f

is continuous.

The graph of f is [(x,y)Iy f ( x ) ’j .  A necessary and sufficient

condition for f to be upper semicont inuous is that the graph of f is

closed and f is bounded on compact subsets.

If f(x) is any single point for each x then the above definition

of upper semicontinuity coincides with the usual definition of continuity.

The same is true for lower semicontinuit y.

If D is a subset of R
X
~ then D* is the set of all nonernpty

compact convex subsets of D.

n
Let K be a convex subset of R . Let f:K —.~ R be upper semi-

continuous. A pair (x,y) is a stationary point of (f,K) if x i K,

y f(x~, and (u-x).y >0 for all a € K.

As an example consider the programming problem

tnin g(x~
x€K

where g is differentiable.

We now show that for every solution x~ to this mInImization

problem that (x*,c7g(x*)) Is a stationary point of the pair (~7g,K).

Suppose x* solves the minimization problem. Then x~ € K. Let

u € K. Singe g is differentiable we may expand it in a Taylor series

for ~ C ~~~~~

+ (l_?~)x*) = g(x* + 7.~(u_x *))

= g(x*) + ),Vg(x*).(u_x*) +

12

_ _  
- -- -— - - .—-- — - ——— — -  _ _ _ _ _ _ _ _ _



Here a:R —,~ R is a function which satisfies lim.. a(?~) 0. Since
A -4O

g(x*) ~ g (x* + ?.~(u_x *)) for all 7’~ ~ 10 ,1], ~7g(x*).(u_x*) + a(?.~) > 0

for all ~ C [0,1]. Since lim~~~0 a(?~) = 0 we have ~7g(x*).(u_x*) >0.

Since this is true for all u € K, (x*,~7g(x*)) is a stationary point

of the pair (vg, K ) .

Given a convex cone K in Rn, its polar K+ is the set of all
fl n*vectors y in R such that x~y > 0 for all x € K. If f :K  -s R

then the completnentarity problem (f,K) is to find (x,y)  satisfying

x € K, y € f(x) fl K~, and x~y = 0

Much effort has been expended in studying the completnentarity problem.

Moreover , a wide range of applied problems have been reduced to it.

However, in many instances the stationary point problem is the more

convenient reduction. The next result from Saigal [12 ] relates the

two problems.

Proposition 1. Suppose K is a convex cone and f :K -~~ R
n*
. Then (x ,y)

solves the compleinentarity problem if and only if it solves the stationary

point problem.

Proof. Suppose (x,y) solves the stationary point problem. Then

y € f(x) and x~y < u~y for all u C K. Since 0 C K, x y  < 0. Also

x € K implies px € K for p > 0. So for p > 0, (p-l)x.y > 0.

Since p-I changes sign, we must have x~y = 0, and thus u~y > 0 for

all u € K which says that y € K~, so (x ,y) solves the complemen-

tar ity problem.

Next let (x,y) solve the complementarity problem. Hence f or

all u € K, u~y > 0 = x y  or (u-x).y > 0. Now I need only to note

that x € K and y € f(x). 0

13



The following proposition concerns another important special

case of the stationary point problem. It also illustrates the relation-

ship between the stationary point problem and stationary points of mathe-

matical programming problems.

Proposition 2. Suppose A C R
m )<Tl

, b C R~, and K = (XER ~ IAX < b3 .

Let f:}-~ ~~~~~ Then (x,y) solves the stationary point problem

(f.K) if and only if x C K, y C f(x), and there is a ~r > 0 for which

(Ax- b~ = 0 and AT77. + y = o .

Proof. Let (x,y) solve the stationary point problem. Then x solves

this linear program.

mm ~~~~~~

Au < b

Let ‘~ be the solution to the dual

max _b .ir

AT rr + V = o

Now ~.(Ax-b) = 0 since A T
~ + y o and y . x = -b.” .

Conversely if Ax < b , “ >0 , r (Ax-b ) 0, and A Tr + y = o
then -b~-~ = -m Ax y .x so x solves the primal linear program . If

in addition y € f(x) then f ~oives the stationary point problem. 0

l~4
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‘ .2. Existence Theorems

This section has two main theorems which deal with the stationary

point problem. Theorem 3 is a very general but non-constructive result.

The p roof is adapted from Saigal l~ ], but the theorem is more general

in that it deals with the stationary point problem rather than the

complementarity problem. If A and B are sets then we write ANB

for the intersection of A and the complement of B.

Theorem 3. Let K R~ be closed and convex, C c K be compact, and

let f:K -~~ R~ be upper semicontinuous. Suppose that for all

x 
~ KNC

. y C f(x) there is a u C for which (x-u).y > 0

Then the stationary point problem (f,K) has a solution.

Proof. Define D to be any compact convex set C C D C K such that

for all x C C, y C K~~. D there is a ~ > 0 such that (l-~ )x + ?‘.y C D.

Let E be any compact convex set containing f(D).

-- nFor each y ~ R define ii (y) to be the set of all x C D

which minimize x~y on D. Then -n is upper semicontinuous and for

each y C R~, ir (y) is nonempty, convex, and compact.

Define r~D X E  ~4D* X E* by (x,y) —~ (ir (y), f(x)). By the

Eilenberg-Montgomery fixed point theorem 1 8], F has a fixed point.

Call it ~~~~~
I now necd only show that ~~~ 

< x•~ for all x K. Suppose

to the contrary that there is some x C K with x.~ 
2.~ . Then

x - K\  D. Also ~ ~ C since if ~ C then there is a 7’~ > 0 such

that (i-~)~ + Xx D, but this implies [(l-X)~ + Xx]~y < ~~ which

contradicts the definition of ~. So ~ / C.

I’

-- --~~~~~-- -~~~~~~.-~~~~~~~~ -, .— ----- — .
- 

— — .



Then there is a u C C with (~~-u ’~~ > 0 or ~~~ > u .~~. There

is a ~ > 0 with (l-?~)u + Xx D, so

( l -X )u + Xx]~~ ( i_ ~ ’ u~~? + Xx .~ < ~~~

which contradicts the definition of ~~. So for each x C K , ~~~ < x•~

and ~~~ is a stationary point of (f , K ) .  0

The basis for the constructive results of this section is the

algori thm of Eaves and Saigal [7]  for systems of nonlinear equations .

The next lemma gives a general condition on a point-to-set map

fl fl* nf: R —~ R under which an x C R may be approximated which satisfies

O C f(x). The algorithm solves the system of equations using piecewise

linear approximations. The solut ion is approached by solv ing finer and

fi ner approximations .

We say U separates v U from infinity if every connected

set containing v and not meeting U is bounded.

Let C C Rn. We define conv(C) to be the intersection of all

convex sets containing C. We write dia(C) for

sup IIx-y~I
x, yEC

In p roving the following theorem we list some of the most important

properties of the Eaves—Saigal algorithm. A complete description of

the algorithm may be found in Eaves and Saigal [7].

l(
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n
Lemma ~

.. Let f :R  -~~~ R be upper semicontinuous . Let v C R

Let U Rn be a closed set which separates v from infinity. Let

D be the un ion of all connected sets containing v but not meeting U.

Define G:R~ —~ R~ by G(x)  ‘
~~ con v( f (x )  U fx -v ) ) .  Suppose that

O ~ G ( U ) .  Then there is a h > 0 such that if the initial grid size

is less than ~ then the Eaves-Saigal algorithm will not evaluate f

outside D. Therefore it will converge to a connected set C1, ~

with 0 C f(x) for all x C C .

Proof. Given a starting point v and an initial grid size ~ the

Eaves—Saigal algorithm generates a sequence of sets C1, i = 0,1,2,...

with the following properties.

(2.1) v C conv(C0)

(2.2) dia(C~) < ~~

(~.3) 0 C conv(f(C
~
) U (Cr-v))

(2.i4) C. ÷1 = C. U (s.)’\(t.)

(2.5) if C
i 

—,x on a subsequence then 0 C conv(f(C . ) )  for all
j  j

large j.

(2.E) If all C1 lie in a bounded set, then dia(C~) -sO.

Let C = ur n C .. If x€  C then 0 C f(x). If all the C
1

lie in a bounded set then C~ is a nonempty, closed, connected set.

17



D is a connected set containing v, and not meeting U, so D

is bounded since U separates v from infinity.

We now use an indirect argument to verify the theorem. If the

conclusion does not hold then there is a sequence —*0 such that

for each k the algorithm produces a sequence C~ , i = 0,1,2,... which

is not contained in D. For each k let be the first point in

the sequence C~ which is not in D. By (2.14) C . - fx
k
) C D so

d(x
k
,D) <

-Ic . . . k-k k . k
Let x be any point in D with d(x ,x ) < ~ . Since x ~ D

k k-k k k
there is a point u C conv(x ,x ) fl U. Therefore d(x ,U) < 5

Let x~ be any cluster point of the ~~~ Then d(x*,U) = 0,

so x~ C U since U is closed. But since for all I and all k,

0 C conv(G(C~ ) ) ,  it follows that 0 C G(x*). This contradiction proves

the theorem. 0

In practice neither S nor the set U will be known to the user

of the algorithm. However, if it is known th~.t the function f and

starting point v satisfy the hypotheses of the lemma for some U

then the following process may be employed to find a solution.

1. ” Choose and MIc, k = 0,1,2,... such that 5k ~~~~~~ and

°‘. Set k = O .

2.) Apply the algorithm to f using starting point v and initial

grid size If no points x C Rn are generated with

~x-v H > M
Ic then the algorithm must converge to a set of solutions .

Otherwise go to 3.

- .— --- - - .c 
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Set k = k+l. Go back to 2.

Eventually, a k will be found for which is small enough

and Ix-v !l < for all x C 0. Lemma 14 tells us that the algorithm

will converge to a set of solutions for this Ic.

Th practice grid size does not appear to be critical. If the

algorithm seems to be straying too far from the starting point, it would

probably be better to look for errors in the formulation than to try

again with a smaller grid size.

Lemma 5. If p, q, and r are in Rn and lip-qil < Jp-rII then

(p_r)(q-r > 0.

Proof. Jp_q~C < lIp-r~I2

2 2(p- r) - (q -r )  < j p-r~j

I p~ r II 2 
- 2 ( p - r )  ( q- r ~ + IIq-r~

2 
< ~p-r~

2

-2(p-r)(q-!-~ + jq-rI~
2 

0

(p-r) (q- r)  > 0 .

The next theorem is a constructive version of Theorem 3. In

order to be able to compute a solution we need only slightly stronger

conditions than in Theorem 3.

A function g:R
n 

~ 4 B is convex by definition if for all x, y C Rn,

- to ,l], g(Xx + (1-X)y) < Xg ( x )  + (i-X) g(y). If g is convex then

we define the subgradient map of g by

19 
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~g(x )  = (y c En IY. (x-u ) > g(x ~ - g(u) for all u C R~)

If g is convex then ~g(x)  is nonempty, compact and convex for each x

and ~g is upper semicontinuous .

Theorem C. Let g~ :R fl 
—* R i = 1, ... , m be convex . Let

K = (x C Rnh
jg1(x) < 0, I = 1, . . . ,rn) . Let C ‘I K be compact. Let

n n~ 0
f:R —* R be upper semicontinuous. Suppose that there is a u C C

such that g.(u°) < 0, i = l,...,tn. Suppose that for all

x C KNC, y C f(x) there is a a C C such that (x-u’ .y >0. Then

the stationary point problem (f,K~ has a solution which can be

computed by the Eaves-Saigal algorithm using any starting point.

Proof. For each x C Rn define F(x) to be the set of all

I . .

~~~~~~~ ~~~~~~

‘ which satisfy these conditions.

in

1=0 
—

y0 C f ( x )  = 0 if for any i ~ 0, g1(x)  > 0

(2.7) For i = 1,. .,rn

y 1 
~ ~g1(x)  X . = 0 if g1( x) < 0.

First we need to show that F is upper seniicontinuous. Suppose

that -~~ x, and w~ C F(x~) for each j. For each j  there exist

20
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and y1
~ ’~, i = 0,.. ., m which sat is fy  (2 . 7 )  and such that

= ~~~ 
N’?y

1’3 . Since the x~ co nverge , they lie in some compact

set. The ~~~ are in the (compact) images of this compact set

under f, )g1, . . .  , ~g .  Thus there is a subsequence on which the

and 7~ converge, say to y~ and X. In the following we

will deal only with this subsequence.

Since the g1 are continuous, for all .j sufficiently large

and for all i = 1,...,m, g~(x
3) >0 if g~(x) >0 , and g.(x3) < 0

if g~(~~ 
< 0. If for any i = 1,.. .,m, g.(x) >0 then = 0 for

large j, so X0 = 0. If i = 1,... ,m and g.(x) < 0 then X’? = o

for large j ,  so = 0. Since f and the ~g1 are upper semi-

continuous, y
0 C f(x) and y

1 
C ~g~(x). Therefore ?~, x , and

I = 0,...,m satisfy (2.7). Let w ~m 7
~l

y

i Then w E  F(x)  and

on the subsequence w3 -4W so F is upper semicontinuous.

It is clear that F(x) is nonempty, convex and compact for

each x.

Let v C B”. Let M = sup
~~C 

lu-vu . To show that F satisfies

the hypotheses of Theorem 14 it only remains to show that for all x C Rn

with ~x-vH > M that 0 EZ’ conv(F(x) ‘J {x-v1 .

So s uppose x C Rn and I!x-vH > M. Let w C F(x . There exist

?\. y0 , . .  • , ~~m which s at isfy ( 2 .7 ) such that w = Y”~ 0 ~~y
i 

There is

a a° C C such that g~(u°) 
< 0, 1 = 1 in. We distinguish two

(
~aees according to whether = 0.

If ~~>0 then xCKNC so there is a u~~C such that (x-u)~ y
0 > 0.

Choose a sufficiently small that (x-(au° + (l-cy)u)).y° > Q~ Let

21. 
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u’ = ru° + (l-a)u. Then g.(u’) < 0, 1 = 1,. ..,rn. For each i = 1,.. .,m

if A. >0 then g1(x~ > 0, so b’r the gradieni~ inequality (x-u ’ ) .y 1

> g. ( x) - ~~ (u ’~ > 0 .  Now (x-u ’ ) . w  = ~ii~~ X1(x-u ’ ) y 1. Thi s sum is

positive since no term is negative and some term is positive . Since

> Ilv-u ’II we have (x-u ’).(x-v ’ 
~
> 0 by Lemma 5. Therefore

0 ~ conv( [w) U fx - v ) ) .

But if = 0 then for each i 1,.. .,m if >0 then

g1(x
l > 0 so by the gradient inequality (x_ uO ) .y 1 > g . ( x )  - ~~ (u°) > 0.

Now (x-u°)w = 

~~~ l 7\~ (x_u O )y i . This sum is positive since some term

is positive and no term is negative. Since ulx-v uu > Iv-u°Il we have

(x-u°) .(x - v )  > 0  by Lemma 5. Therefore 0 ~ conv([x} U (x-vfl .

Since 0 ~~
‘ conv((w) U [x-iz) ) for all w C F(x~ ,

0 ~ conv(F(x) LI (x -v}) .

By Theorem 14 we may use the Eaves-Saigal algorithm to approximate

an x C R~ with 0 C F(x). For such an x there exist A and y
i
,

I 0,...,m which satisfy (2.7) and 
~~ 

A .y ’ = 0. For each

i = 1 in if > 0 then g1(x~ > 0 so by the gradient inequality

(x_ u O )y i 
~ ~~

(
~ ) - gj(u°) > 0. If <

~
‘ 1 then

~~(x-u°’iy 0 
= - 

il 
A~

(x_u°)y 1 
< 

~ 
~ . (g . ( u0 ) - g1( x ) )  < 0

Thus > 0. Let U C K. Then

= - 

i=l 
X1(x-~~)y~ < 

~~ 
A. (~~ (~ ) - ~~~~ < 0

So (x-~ )y° < 0 and (x,y
0
) is a stationary point of (f , K~ . 0

~~~
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- .3. Uniaueness Theorem s

In this section we explore the question of uniaueness of

stationary points.

Let f:K —, R where K c R is closed and convex. The

mappi ng f is called monotone on K if for every pair of vectors x

and x~ in K and every y1 C f(x1) and y2 C f(x6~ , 
(x 1-x ).(y1-y~ ) > 0.

The mapping f is str ictly monotone if for every pair of distinct vectcrs

I - 1 2
x and :~ in K , and every y C f ( x  ) and y C f \ x ),

(x
1

- -~~ 
. (y l-y?) > 0. The following is a useful uniqueness result for

the stationary point problem.

THEO REM 7. Let f : K  —* H be str ict ly monotone. If there is a solution

to tl~e stationary point problem (f , K) then it is unique .

1 1 .  2 — 1 1
Proof. Suppose (x ,y and (x ,y ) solve (f,K .  Then y C f(x ) ,

y C f ( x  and for all u € K, (u-x
1
) ~y

1 > 0 and (u_x~ - ~~ > o.

In particular (x ? _x l ) .y l > 0  and (x 1-x2 ) .y 2 > 0 .  Summing these

we have (x 1-x~~ (y
1
-y’ 0. But this is impossible s ince f is

strictly monotone. U

The following theorem is based on the same idea , but is slightly

more general. By using linearity and relaxing the strict monotonicity

we obtain not a unique solution, but a convex set of solutions. However,

in many cases we may be able to determine the entire set of solutions.
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C

THEOREM .~~~ Let K~~ R
” and B C R

m
~~~. Let L = (Bxu x C K). Let

n~~n
f:L —* H be strictly monotone. Let A C R be positive semi-

n* - T
definite. Define g:K -s R by g(x =- B f(Bx) 4- Ax. Then the set

of solutions (x,y) to the stationary point problem (g,K) is convex

and Bx has the same value for all of these solutions.

Proof. Suppose (x1,y1) and (x2.y
2
) solve (g,K). Then there exist

1 2 . I T i  i I iw and w such that for i = 1,2, y = B w + Ax , w C f(Bx ) and

for all u € K, (u_x
1).(BTw~ + Axi) >0. In particular (x2_xl).(BTwl+Axl) >0

1 2  T 2  2 . 1 2  T l 2  1 2
and (x -x ).(B w + Ax ) >0. Summing these (x -x ).(B (w -w )+A(x -x ))<O

1 2 -  1 2  1 2  1 2  .
or (x -x ) .A(x -x ) + B(x -x ) .  (w -w ) < 0. But since A is positive

semi-definite B(x
1
-x
2
)~ (w

1
-w
2) < 0. Since f is strictly monotone

this implies that Bx1 = Bx2.

Let A C [0 ,1], x = Xx1 + (l--?~)x
2, y = + (l-7~)y

2
, and

w = Aw1 
+ (l-X)w

2 . Then Bx = Bx1 = Bx2 and y = BTw + Ax. Since w1

and w2 are in f(Bx) and f(Bx) is convex, w € f(Bx). So y € g(x).

Let u C K . Since A is positive semi—definite

(u-x)Ax > 7~(u-x
1)Ax1 + (l-X) (u-x2)Ax2

T T l  T 2
(u-x)B w = A(u-x)B w + (l-X) (u-x)B w

1 T l  2 T 2X(u-x )B w + (l-X) (u-x )B w

(u-x) (BTw + Ax) > 7~(u-x
1
) (BTwl + Ax1) + (1-A) (u-x2~ (B

T 2  
+ Ax2) > 0

Therefore (x,y) solves (g,K) and the theorem follows . 0
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1

~~)OFS uF THE ‘~,iN TI-~ 0REMS

This chap ter is devoted to the proofs of the theorems of

Chapter 1. Theo rem 1.1 will not be given a separate proof since it

is clearly a special case of Theorem 1.2. Here t > means no

component of t is less than E .

Proof of Theorem 1..~~

Throughout this proof tk k will represent the constant zero.

Thus t ~ Bin where in = 
~ 

.(
~~ -l~ . For computational efficiency

we will  make the additional requirement that y . . . = 0 for all arcs
1,], 1

1,1. In the following we will s ho~ that a solution to the equilibrium

oroble m can be computed which sat isf ies  this restriction. For this

reason we will regard y as a vector in Rn where n = q •  (~~ -l~
~imc q ~ is the total num’oer of arcs. Define B C H

by

~~~~~ =
~~~~ 

y . .  i j € c ~ .
id k

The n we may write

(B
T

x ) . . k  = x~~. I ~ Ic, ij c ~, k €

- m x nDefine a matrix A € B by

i / k , i,kE~~~.
j .1

- .— — --- — - - - - -  r — - - .  . - - -“ 
. - - r - —- - —



Then we may write

(A Tt ) ij, k = t
ik 

- t
jk 

i ~ Ic, ij C U, k

In these formulas y.. . and tk Ic are to be read as zero
13, 1

where they appear.

For each £ ~ k, 2 , k choose a path from £ to k. Let

d
P
~
k be a vector in Rn such that d

~
’.’
~k 

= 1 if i j  is on the path

and all other components of d
2,k are zero. Thus Ad 2,k is a vector

in Rin such that (Adt”
~
)2 k  

= 1 and all other components are zero .

Choose b C R
m 

so that b > g(t) for all t > ~:. Choose

h C Rn so that for all ii € ~, k C ‘~~~~, i ~ k

h . >~~~(b +1)
‘-‘-‘ 2 ‘

Let K = ((y,t) C R’~
4-”
~t > ~‘, 0 < y < h). Define

m+n m+n*G:R -*R by

fB
Tf(By _ A Tt

G(y,t) 
~ 

(
\ Ay - g(t)

We proceed to show that the stationary point problem (G,K)

may be solved as described in Chapter 2, and that this solution will

also sAve the equilibrium problem.

Let = 
~~j  k

(bi Ic + l)d
i
~
k
. Then for each ij C

i ~ Ic we have the following.
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= 
~ 

(b~~~ ÷ l~ ~~~~ ~ ~ 
(bt k  

+ 1) < hijIc

0
y < h

Ay° = ~ (b. k 
+ l)Adi,k = b + e

i,k

Here e € Rm is a vector of ones. Let

M = 
_~~f((y_y

0)~ B
TT~O < y < h , t € f(By))

Then M > 0 since 0 <y~ < h .  Let

C = ~~y, t) C Rm~~ l (y, t )  C K, e~t < M)

If (y,t) C K\C then for each y € g(t’ , t C f(By )

0 T T
f Y - y  \ 1 o i - A t

( ) ( = ~y.y
O
~ .B

T r + t~~(Ay°-y)

\ t / \A y - y

> -M + e.t > 0

So by Theorem 2.6 the stationary point problem (G,K) can be

solved.

Suppose ((y,t),(B
T r,y~)) solves the stationary point problem

(G ,K ) .  By Proposition 2.2 we may write this in the following way.

t > ~~, O < y ~~~h, 1 C g(t), - f(By)

i,k ~ ~ij,k 
- 

~~ ~ji.k

i ~4 Ic, i. k C

(tI,k
_ .)

~~
(rj,k — 

ij,k 
+ 

~~ 
~ji,1c

’
~ 

=
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>0 ~f y. < h
— ij,k ij,k

~ij 
+ t

jk 
- t

i k  ii C ~ k ~~~~~~ i~~k

if Yij , k > O

If for some i,k, Ti,k ~ ~~ ~~~~ 
- 

~~ ~~~~~ 
then t

i,k 
= €

and for all arcs i1i2 along some path from i to Ic , y . 
~. k >0.1
1 2’

Therefore t .  > t . +~ - since r . ~ ~~. But since t = 0,i1,k i2 , k if- , k,k

ti,k > by transitivity along the path. So = - 

~ j~ ji , k

after all.

If for some ij C ~~ , k C ~~~~~~, I ~ k , 
~ijk 

= hi j I c  then

~ij . k  > 
~ 2 b

2 k  ? 
~~2 r2 k .  That is, the traffic on arc ij with

destination Ic is greater than the traff ic from all origins with

destination Ic. This is only possible if there is a loop which includes

ij such that for all i1i2 in this loop y. 
~. Ic 

> 0. This implies
~i 2’

that t .  > t . since -r . > 0. But this is impossible since
i1, k i2, k 1112

it implies by transitivity along the ioop that t
i k  

is less than

itself.  Therefore y < h.

Since t > € it follows that t > 0. Since t > 0, t > 0

and tI c k  = 0 for all k, ‘ij 
+ ~~~~ - ~~~ > 0.

Taking the last three paragraphs into account we may write the

solution conditions for the stationary point problem in this way:

t > 0, y > 0, y C g(t), t C f (By)

rI k  
= 

~~ ~ij,k 
- 

~ ~ji,k 
i / k~ 1, Ic C

2~

— —-  — ,,- ,— . - - 
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t .. + t  - t . >0
13 j,k i,lc —

ij € ~~~, k L
(~ .. + t . -t . ;~ y.. = 0

i .i j,k i,k ij,k

But these are precisely the desired equilibrium conditions if we let

x = B y .

Before proving Theorem 1.3 we will need the following lemma

on the minimum of a continuous function. If f~R~ — + B  and DC Rn

then we define

arg mm f(x) ~ (x C D I f ( x )  < f ( y )  for all y C D)
x E  D

ifi *Lemma. Let K:R ~~D be continuous, where D is a compact subset

n n kof R . Let f: R x R ~~R be a continuous function. For each

in Ic
z C R , w E R let J(z,w) = arg mm f(x,w). Then J is upper semi

xK( z)
continuous.

Proof. Suppose z1 — z, w
i 

—÷ w, and x m C J(z1,w
i
) for all I. Since

each x1 C D there is a subsequence on which the x1 converge, say to

x. Since K is upper semicontinuous, x C K(z). Hereafter we will work

only on this subsequence. If x C K(z) then since K is lower semi-

continuous there is a sequence —,x such that ~~ € K(z’) for all i.

Theref ore

f(x,w) = u r n  f(xm
,w

m ) < u rn f(xm,wm
) = f(x,w).

So x C J(z,w) which implies that J is upper semicontinuous. 0

— .  - — - - —-- - - --- - - - — -  - -r-~- - - - -  -
~~~~~~~,
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Proof of Theorem 1.3. For each j = 1, . .. ,p and each t > ~ let

K~(t) = ((q3,y3) H >0, q3 < ~~~ , r~ < q3)

Then for each (q J ,1J ) C K~ (t)  we have 0 < q3 < and

Therefore U K~(t) is bounded. Define
t > E

i ~ . u jh (t) = a~’g mm U(q ,~~~

(q3,y3)CK3(t~

Then n~ is bounded on (tit > € 1 .

For each t > € there exists (q3,r3) C K3(t) such that > o,
q3 < and y 3~t < q

3 . So by [6 , Corollary 11.3.2] K3 is continuous.

By the lemma h3 is upper seniicontinuous. But g3 can be obtained by

deleting the first component in the range of h3. Theref ore g3 is

nonnegative, bounded , convex valued , and upper semicontinuous on

[t ~t > i- ) ,  and so is g since g = ~ .g3. 0

Proof, of Theorem 1.14. In the proof of Theorem 1.2 we introduced a

stationary point problem (G,K) and showed that solutions to (G,K)

are also solutions to the network equilibrium problem. Here we show

the opposite, namely that solutions to the equilibrium problem solve

the stationary point problem. The theorem will follow when we have

shown that (G,K) satisfies the hypotheses of Theorem 2,q,
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Since g is nonnegative and —g is strictly monotone, g

is positive. Suppose y, t, r , and r solve the equilibrium problem.

We may state this as follows.

t >0, y > 0, € g(t), -r C f(By)

1i, k ~ ~‘ ij, k - 
~ ~ji,k 

i~ / k~ I, k C

-r .. +t . - t. >0
13 j,k i,k —

j i € ~~ , Ic

(r ,. +~~~~ -t , )-‘ y.. = 0
13 j,k i,k i3,k

For any pair of nodes i, Ic since rIk 
> 0 then for all

arcs i1i2 
along some path from i to k, y4 . > 0. Therefore

1
10, ~

t > t . + € since -r . > € .  But since t = 0, t. > €
i1,

k i2,k 11
1
2 

k,k i,k

by transitivity along the path. So t > € .

If for some ij € a, k E’?/ , i ~ k, ~ijk ~ 
hi j Ic then

~ij,k 
> b

2~~ ~ ~~ ~~~~ 
That is, the traffic on arc lj with

destination Ic is greater than the traffic from all origins with

destination Ic. This is only possible if there is a loop which includes

i j  such that for all i1i2 in this loop y. 
~ 

> 0. This Implies
- 1 _ _”

that ~ > t since T • . > 0. But this is impossible sLicej
2,
k 1

1
1
2

it implies by transitivity along the loop that is less than

itself. Therefore y < h.

Since t > € and y < h, we have in fact a solution to

(G,K).
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To show that the hypotheses of Theorem 2.8 are satisfied we

make the following definitions.

/0 
_AT

\ /B o
I

\A o /  ‘° ~ ,xrn

~(x ,t) = (f(x), —g(t))

Clearly G(y,t) = ~
T
~(~ (y t)) + A(y,t). ? is strictly monotone because

f and -g are strictly monotone. It Is easy to see that A is

positive sernidefinite. Therefore the set of solutions to the stationary

point problem (an d the equilibrium problem) is convex , and ~ (y, t)

has the same value for all such solutions. In particular t is unique

and By is unique but the flows y may not be unique. 0
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CHAPTER 14

COMPUTATION

The purpose of this chapter is to demonstrate the cc rm ota ’Aonal

viability of the procedures described in Chapters 2 and ~~.

14.1. Formulation and Approach

The method used to solve the network problems is outlined

in the proofs of Theorems t .  , 2.~4 and 2.6. The proof of Theorem 1.2

(Chapter 5 ) shows how the network problem can be formu]a ted as a

~-tationary point problem which satisfies the conditions of Theorem 2.E - .

The proof of Theorem :.r shows how such a stationary point problem

can be formulated as a problem of finding a zero of a point-to-set map.

H. ~~. Aashtiani [11 has had some success with an approach to

solving traffic network problems which uses Lemke’s algorithm as a sub-

routine. However, no convergence proof is offered for this process.

C3nslderable latitude is available in solving a stationary problem

(f , K~ using the Eaves-Saigal algorithm. The remainder of this section

is devoted to a tr ick which uses this latitude to reduce the time required

to solve certain stationary point problems .

In the proof of Theorem 2.6 we defined a map F by setting

F(x) equal to the set of all ~~~~ A.ym such that

m
~ ~~~~~~1=0

y
0 € f(x) = 0 is for all i ~ 0, g1(x) 

> 0
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For i = l ,...,m

y1 € ~g.(x) A . = 0 if g.(x) < 0.

In solving a point-to-set map F using the Eaves-SaIgal algorithm

a unique member of F(x) must be chosen for each point x C Rn. It

Is often the case that f and ~g1 are continuous, so that the y1

are unique. However we still must choose the weights A
~
.

In addition we may choose the triangulation or grid on which

the Eaves-Saigal algorithm operates. In the case where the functions

g1 are affine it is possible to choose a trIangulation in which every

simplex which meets the interior of K is contained in K. Using such

a triangulation with a choice of A where = 1 if x C K, we obtain

greatly superior convergence. This is due to the fact that a solution

to the piecewise-linear approximation at large grid sizes is a good

approximation to the actual solution. This is not true for most choices

of weights 7~ and of the triangulation. Finding a suitable triangulation

is particularly easy in the case where the constraints on K are only

upper and lower bounds, as they are for the network problems of Chapter 1.

In the next section we will demonstrate empirically the usefulness

of this technique in the case of the traffic flow problems.

14.2. Examples.

In this section two examples are given of the network formulation

of Chapter 1. In order to solve these problems we prepared a computer

code which provides an interface between the network problem and the
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~-~vcs-Saiga1 algorithm . We used a program by Romesh Saigal to execute

the Eaves-Saigal algorithm .

All of the computer runs were made on an IBM 570/168 using

FcJ~TM1~ H with the highest level of optimi zation.

If D Rn then the ~j a~ etcr of D is sup D~iX _Y Il * The

ini tial grid Aze~ repor ted below refer to the diameter of the simplices

-on which the function is f i r s t  evaluated . The f i nal grid sizes refer

to the diameter of the final simplex .

The first example is based on the following network.

l 2

~,1

Here ‘7) = [1,2,5) and a = tl2 ,21,~j,5l)
. The delay foret ions are

(y~~ —10 )
f
12
(y) = 10 + e + 1.25 log(y21 

+ 1.0)

10 + e~~~~~~
0) 

+ 1.25 log(y12 
+ 1.0)

(y -lv’
f 5( y )  = 14 + e 25

(y ~~~
f51

(y) = + e 51

where

~ ~‘ij , k

5)

. - -~~~~~~~ ~~~~~~-~~~~~~- - . - - - - —~~~~~~~~~~~~~~



The travel demand functions are as follows.

= 
t12

+l

120
g1,3(t) = 1

140
t2 u~

’1 if t2 1 �t 2 3
g (t) =
2,1 

t2~~~~l 
if t21 ~

if t2 1 ~ t~~5

g
2 

(t) =

‘ 
______  if < t

23

g
3,1

(t) =

100
=

Where more than one function value is given at a particular

point (e.g. t21 
= t

23
) the value of g is the convex hull of the

two values. In this case some of the travelers from node 2 will go to

either 1 or 3 depending on which is closest. If the travel times are

equal then those travelers who want to go to either 1 or 5 will be

divided between the two destinations.
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Arcs 12 and 21 represent a two—way street. Note that although

the function is symmetric with respect to the two arcs, the Jacobian

matrix will not be symmetric unless the flows in the two directions are

equal. Therefore, the method proposed by Dafermos ~14] would riot be

applicable here. Furthermore the demand functions are neither invertible

nor continuous. Therefore the full power of Theorem 1.1 is required to

solve this problem.

Here are the equilibrium values.

i, Ic t i k  g .k
(t )

1, 2 19.30

1,5 28.145 14.08

2 , 1 15.22 2.~~~l

2 ,5 9.13 7. C

5, 1 ~.o’? 11.79

3, 2 23.38 14 . 10

ij,k 
~ij,Ic

12, 2 8.014 19.30

12,5 14.08 1 .50

21,1 1.15 13.22

21,5 0.00 15.22

23, 1 1.66

23,3 11.97 9.13

31,1 i~.146 14.09
51, 2 14 . 10 4 .00
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This problem was run with and without the special alignment

discussed in Section 1. In each run the initial grid size was 18.7

and the final grid size was 2.8 x ~~~~ The same answer was found in

each case.

In the first run the triangulation was aligned with K. In

this case the algorithm required 886 function evaluations, 979 pivots, and

1.70 seconds CPU time. The starting vector had 1.25 in each component.

In the second run no alignment was used. This time the algorithm

required 1598 function evaluations, 1690 pivots and 2.85 seconds CPU

time. The starting vector had 1.00 in each component.

The second example is based on the following network.

Now = (1,2,3) and a = (12,21,23,52,31). The delay

functions are

(y~~-lO)
f
12

= l O + e  + l.25’log(y
21

-I’ l)

+ l .25.log(y
12 +l)

~~~2 
-10)

= 5 + O.5’e + O.625.log(y
32 

+ 1)

(y
32 
-10)

= 5 + O.5’e + 0.625~log(y23 
+ 1)

~~ i
_
~~
0)

= 15.0 + l.5e
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4

where

~ij 
= 

~~ ~ij,k

The travel demand functions are identical to the earlier example .

Here are the equilibrium values.

i,k t
i k  ~i,~~

(t)

1,2 13.30 5.59

1,3 23.55 4.89

2 ,1 13.05 2.85

2,3 10.25 7.11

5,1 15.39 3.66

3,2 8.O~4 ll.O~

ij, k 
~ij , k f’

ij

12, 2 5.59 15.30

12,5 4.89 13.30

21,1 2.85 13,05

21,3 0.00 15.05

23,1 0.00 10.25

23,3 12.00 10.25

32,1 0.00 8.04

32,3 11.06

31,1 3.66 l5.3~

31,2 0.00 15.39

- - - ~~ - . a- a_ -— --



This problem was also run with and without the special align-

ment discussed in Section 1. In each run the initial grid size was

20.0 and the final grid size was 2.9 x lO~~. The same answer was found

in each case.

In the first run the triangulation was aligned with K. In

this case the algorithm required 1107 function evaluations, 12014

pivots and 2.39 seconds CPU time. Without alignment the algorithm

required 1921 function evaluations, 2016 pivots and 3.92 seconds CPU

time. The first starting vector had 1.25 in each component, the second

1.00 in each component.

From these run s we may conclude that the procedure developed

here is a viable approach to the traffic equilibrium but that the

alignment technique significantly reduces the computation time.
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TRAFFIC NETWORK EQUILIBRIA by Richard Louis Asmuth

,.,
—W e  t onsider here a model of traffic flow on a road network. For

each ordered pair of nodes there is a demand function which expresses

travel demand between the two nodes as a function of travel times on

the network. Each road (arc) has a delay function which expresses

travel time on that arc as a function of total t raff ic  flow . Our objec-

tive is to show how an equilibrium of travel times , flows , and demands

may be computed under conditions which are simple, general, and

plausible . 
- I~ ~-‘ - c ’

To solve the network problems ~~~~~~~~~~ techniques for solving

the stationary point problem. These techniques for the stationary

point problem are the best ofS~~
ch we are aware.
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